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Abstract.

Background: Studies investigating the diagnostic accuracy of biomarkers for Alzheimer’s disease (AD) are typically performed
using the clinical diagnosis or amyloid-f3 positron emission tomography as the reference test. However, neither can be considered
a gold standard or a perfect reference test for AD. Not accounting for errors in the reference test is known to cause bias in the
diagnostic accuracy of biomarkers.

Objective: To determine the diagnostic accuracy of AD biomarkers while taking the imperfectness of the reference test into
account.

Methods: To determine the diagnostic accuracy of AD biomarkers and taking the imperfectness of the reference test into account,
we have developed a Bayesian method. This method establishes the biomarkers’ true value in predicting the AD-pathology status
by combining the reference test and the biomarker data with available information on the reliability of the reference test. The
new methodology was applied to two clinical datasets to establish the joint accuracy of three cerebrospinal fluid biomarkers
(amyloid-[3,-4,, Total tau, and P-tau,3,,) by including the clinical diagnosis as imperfect reference test into the analysis.
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Results: The area under the receiver-operating-characteristics curve to discriminate between AD and controls, increases from
0.949 (with 95% credible interval [0.935,0.960]) to 0.990 ([0.985,0.995]) and from 0.870 ([0.817,0.912]) to 0.975 ([0.943,0.990])

for the cohorts, respectively.

Conclusions: Use of the Bayesian methodology enables an improved estimate of the exact diagnostic value of AD biomarkers
and overcomes the lack of a gold standard for AD. Using the new method will increase the diagnostic confidence for early stages

of AD.

Keywords: Alzheimer’s disease, Bayesian method, biomarkers, diagnostic test, reference standard

INTRODUCTION

Biomarkers for Alzheimer’s disease (AD) that are
linked to the pathological process are of paramount
importance for early diagnosis of AD and selection of
appropriate patients for clinical trials [1, 2]. Before
biomarkers can be used clinically, their diagnostic
accuracy needs to be thoroughly ascertained. To this
end, a reference test against which the biomarker is
verified needs to be selected.

The first choice would be the definite AD diagnosis,
provided by postmortem neuropathological analysis.
However, autopsy confirmation suffers from con-
siderable between-laboratory differences [3], is by
definition post hoc, and is only rarely available. In
general, the accuracy of early AD biomarkers, or any
diagnostic test for AD for that matter, is typically
assessed using the clinical diagnosis as the reference
test. The latter is imperfect because the clinical diag-
nosis suffers from classification errors (misdiagnosis)
[4] and the onset of the pathogenic process as reflected
in biomarker changes can precede the manifestation
of clinical symptoms by at least a decade [5]. Hence,
a clinical non-AD diagnosis does not exclude under-
lying AD-pathology and the clinical diagnosis of AD
does not predict underlying pathology, as was recently
shown in the phase III study with Bapineuzimab [6].

The imperfectness of the clinical diagnosis is usu-
ally ignored, resulting in a biased assessment of the
diagnostic accuracy of biomarkers and suboptimal
biomarker thresholds for clinical applications [7]. If the
biomarker and reference test do not tend to misclas-
sify the same patients, the diagnostic accuracy of the
biomarker will be underestimated. When the biomarker
and the reference test are dependent, the diagnostic
accuracy of the biomarker can be either underestimated
or overestimated, depending on the strength of the asso-
ciation [8, 9]. Recently, Toledo et al. [10] demonstrated
that using the clinical diagnosis as a perfect refer-
ence leads to an underestimation of cerebrospinal fluid
(CSF) AD biomarker sensitivity and specificity values
and shifts the cut-offs compared to using the autopsy
confirmed diagnosis as reference test.

Different statistical methods have been developed
to correctly estimate diagnostic accuracy when an
imperfect reference test is used. Reitsma et al. [7]
systematically reviewed the different solutions and
provided methodological guidelines depending on the
medical test under evaluation and the availability and
nature of the data.

To date, these methods have not systematically been
applied to estimate the diagnostic accuracy of AD
biomarkers. An interesting attempt was undertaken by
De Meyer et al. [11], who proposed a method to evalu-
ate the CSF AD biomarkers while completely ignoring
the clinical diagnosis.

More recently, positron emission tomography (PET)
amyloid imaging was used as reference test for eval-
uation of the diagnostic accuracy of (mainly CSF)
AD biomarkers for brain amyloid-3 (A3) deposition
[12]. Although this correctly reduces the time-lag in
expected onset of changes between biomarkers and
reference test, amyloid PET imaging cannot (yet)
be considered a gold standard or a perfect refer-
ence test for early AD. There is no true in vivo gold
standard for amyloid burden and there is substantial
overlap between the distribution of PET measure-
ments for presumed AD and non-AD groups [13,
14]. In addition, as for all tests, PET analysis is
not free from measurement errors, and standard-
ization of different measurement procedures is still
ongoing [14].

As an alternative to search for a surrogate gold stan-
dard, it has been suggested that the complexity of
dementia diagnosis would be best served by integrating
multiple sources of information [3]. A Bayesian frame-
work integrates different data sources in a natural way
and is most suited for this purpose.

Bayesian methods have become increasingly pop-
ular, notably in medical research [15]. A Bayesian
approach can include prior information, accommodate
adaptive clinical trials (e.g., interim analyses, change to
sample size, or change to randomization scheme) and
can be useful for analysis of a complex model when
a frequentist analysis is difficult to implement or does
not exist [16].
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Recent breakthroughs in computational algorithms
and computing speed have made it possible to carry
out calculations of the often computationally intense
Bayesian analysis. Also the fact that regulatory authori-
ties embrace the use of Bayesian statistics has boosted
its application in medical research. Already in 2003,
the US Food and Drug Administration (FDA) approved
a drug combination (pravastatin and aspirin) based
on a Bayesian analysis [17]. Likewise, the Center for
Devices and Radiological Health of the FDA, that is
among others responsible for clearance of diagnostic
test kits, issued a guideline for the use of Bayesian
statistics and now routinely accepts applications based
on Bayesian trials [18].

Bayesian statistics is currently a widespread
approach in oncology. Many leading medical jour-
nals have published original oncology studies using
Bayesian analysis and prominent cancer centers
have implemented several clinical trials, which were
designed using Bayesian methods [19]. In pediatric
science, care providers are accustomed with and often
obliged to rely on evidence from adult studies; bor-
rowing information from adult trials using a Bayesian
approach is common practice [20]. Also in diagnostic
medicine, Bayesian approaches are well-established
and often help to validate diagnostic tests with smaller-
sized and shorter-duration pivotal trial [18, 21].

In this paper, we present a Bayesian framework
which establishes the diagnostic accuracy of AD
biomarkers by integrating different data sources, with-
out the need for a gold standard or perfect reference
test. We applied the new Bayesian analysis method
to establish the performance of the three CSF AD
biomarkers, AB1-42, Total tau, and P-tau;g;, present
in two data sets, with the clinical diagnosis considered
as an imperfect reference test. We hypothesized that
the diagnostic performance of the CSF AD biomark-
ers would be higher when analyzed with the Bayesian
analysis method that accounts for the imperfectness of
the clinical diagnosis.

MATERIALS AND METHODS
Data sets

We used two independent cohorts. The VUmc (VU
University Medical Center) data set that consists of
patients from the memory-clinic-based Amsterdam
Dementia Cohort who received a diagnosis of either
subjective memory complaints (SMC) or probable
AD. Baseline CSF was collected between October
1999 and November 2011. All patients underwent

standard dementia screening at baseline, including
physical and neurological examination, EEG, MRI,
and laboratory tests. Cognitive screening included a
Mini-Mental State Examination (MMSE) and a com-
prehensive neuropsychological test battery. Diagnoses
were made by consensus in a multidisciplinary team
without knowledge of CSF results. The label of SMC
was given when results of all clinical examinations
were normal, and there was no psychiatric diagnosis.
Patients with subjective complaints were considered
as controls, but were only included when the diagno-
sis was confirmed at follow-up visits. This resulted
in 251 SMC subjects. Probable AD (n=631) was
diagnosed according to the criteria of the National
Institute of Neurological and Communicative Dis-
orders and Stroke-Alzheimer’s Disease and Related
Disorders association (NINCDS-ADRDA), and all
patients met the core clinical NIA-AA criteria [22].
More details about this cohort have been provided
elsewhere [23]. All subjects gave written informed
consent for the use of their clinical data for research
purposes. The current study was approved by the local
ethical review board. CSF levels of AB1-42, Total tau,
and P-tau;g;, were determined using commercially
available single-parameter ELISA kits (respectively,
INNOTEST® AMYLOID(1-42), INNOTEST® hTAU
Ag, INNOTEST® PHOSPHOTAU(181P)) and were
not used for diagnosis.

The second data set consisted of Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI)-I patients. ADNI
was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the FDA,
private pharmaceutical companies, and non-profit
organizations. ADNI-I subjects who (i) agreed to
undergo a lumbar puncture, (ii) had results for all three
CSF biomarkers at baseline, and (iii) belonged to either
the control or AD group at baseline, were selected for
the current study. This selection resulted in a dataset
including 96 AD and 109 control subjects. The CSF
biomarker data were obtained using the XMAP plat-
form (Luminex Corp, Austin, Texas) and INNO-BIA
AlzBio3 research-use-only reagents.

Table 1 provides baseline characteristics for the two
study populations.

Statistical methodology

Measure of diagnostic accuracy

To establish the joint diagnostic accuracy of the
AD biomarkers, the biomarkers were combined into
a diagnostic score (see below). As a measure of the
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Table 1

Baseline characteristics of the study populations (mean &= SD)

Dataset Group n Age (y) Female (%) MMSE ABj-42* (pg/mL) Tau* (pg/mL) P-taug;p* (pg/mL)
VUmc SMC 251 64+6.6 104 (41) 28+1.5 874 £251.0 3024+197.7 52 +24.0

AD 631 68+7.5 326 (52) 21+5.0 465+ 161.6 690 +415.4 89+39.2
ADNI Control 109 76+£5.3 55 (50) 29+1.0 206 +54.4 69 +30.2 25+ 14.8

AD 96 75+£8.0 40 (42) 24+19 142 +4.0 122 4+57.0 42 +19.8

*CSF levels of ABj_42, Total tau, and P-tau;g;p were determined using commercially available single-parameter ELISA Kits (INNOTEST®
AMYLOID(1-42), INNOTEST® hTAU Ag, INNOTEST® PHOSPHOTAU(181P)) and using the xMAP platform (Luminex Corp, Austin, Texas)

and INNO-BIA AlzBio3 reagents at VUmc and ADNI, respectively.
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Fig. 1. Schematic summary on the construction of a receiver operating characteristic (ROC) curve and interpretation of the area under the
ROC curve (AUC). The ROC curve is a plot of the sensitivity and (1-specificity) for each value of a continuous diagnostic marker. AUC can
be interpreted as the probability that, for a randomly selected pair of non-AD and AD subjects, the value of the score for the AD subject will
be larger than the value of the non-AD subject. For a score that perfectly separates non-AD and AD populations, the value of AUC is equal
to 1, corresponding to the ROC curve passing through the (0,1) point, i.e., the point corresponding to a diagnostic test with 100% sensitivity
and 100% specificity. For a score that has no discriminative ability, the value of AUC is equal to 0.5, corresponding to a ROC curve along the
diagonal line. TP, true positive; FP, false positive; TN, true negative; FN, false negative.

diagnostic performance of this score, the area under the
receiver-operating-characteristics (ROC) curve (AUC)
was used (Fig. 1).

AD biomarker performance using a Bayesian
framework that accounts for an imperfect clinical
diagnosis

To account for possible errors in the clinical diagno-
sis, both the AD biomarkers AND the clinical diagnosis
were considered as data sources carrying information
about the (unknown) disease status of the subjects.
Note that, in a classical analysis, the clinical diagno-
sis would be taken as the correct disease status, which
does not reflect reality.

A Bayesian framework integrates different data
sources in a natural way and is hence most suited for
our purpose. At the core of the Bayesian approach
lays the use of prior information [15]. The informa-
tion (hereafter also termed ‘prior opinion’ or ‘prior’)
is provided in the form of probability distributions for
the parameters of a model. The distribution indicates

which (sets of) values of the parameters are considered
to be (relatively) more likely than others. In particular,
uninformative distributions (e.g., a normal distribution
with a huge variance) can be used in the data analysis
to imply the absence of any information, i.e., the fact
that all values of a particular parameter are equally
likely. If some information is available, informative
prior distributions are used.

By combining the prior distribution with the data,
a posterior distribution for the parameter of interest is
obtained. The posterior distribution reflects the change
of the opinion induced by the data, as compared to
the prior opinion (see Fig. 2). When uninformative
prior distributions are used, the data is used as the only
source of information. In Bayesian analysis, it is best
practice to perform a ‘sensitivity analysis’ using differ-
ent priors to disentangle the effect of prior information
and the analysis dataset on the reported results.

In our analyses, we made the ‘conditional inde-
pendence assumption’, i.e., we assumed that AD
biomarkers and clinical diagnosis do not misclassify



E. Coart et al. / Performance AD Biomarkers no Gold Standard 893

T T T T T T
40 60 80 100 120 140

T T T T T T
40 60 80 100 120 140

Fig.2. Schematic illustration of the Bayesian ‘Change of Opinion’ approach. X-axis: Parameter of interest (e.g., average biomarker concentration
in pg/pl). Y-axis: Probability of occurrence. Histogram: observed data. Dashed lines: prior opinion (‘prior distribution’). Solid lines: opinion
after obtaining data (‘posterior distribution’), Panel (a): Application of an uninformative prior amounts to forming an opinion based solely on
the observed the data. The horizontal (uninformative) prior distribution indicates that, before data collection, each value is considered equally
likely to occur. As a result, the posterior distribution coincides with the observed-data histogram. Panel (b): Application of an informative
prior amounts to forming an opinion based on combining the prior information and the observed the data. The bell-shaped (informative)
prior distribution indicates that, before data collection, the parameter of interest lies, with 95% probability, within the range of 62 to 98. The
posterior distribution combines the prior information with the observed data. As a result, the obtained posterior distribution is different from
the prior distribution and from the histogram, and it indicates that the value of the parameter lies, with 95% probability, within the range of

75 to 105.

the same individuals. The diagnostic score was
constructed by using a linear combination of the
biomarkers that maximizes AUC for normally-
distributed biomarkers [24].

We used prior distributions for the following param-
eters: the AUC of a combination of biomarkers, the
mean value for each biomarker in the non-AD pop-
ulation, the variances and correlations between all
biomarkers in both populations, the prevalence of dis-
eased cases, the sensitivity of the clinical diagnosis,
and the specificity of the clinical diagnosis. We used
uninformative prior distributions for the biomarkers’
means, variances and correlations, and for the disease
prevalence.

For the AUC of the linear combination of AD
biomarkers, we used more informative priors based
on a paper containing data from 12 publications that
reported a joint AUC for CSF biomarkers [25]. The
lowest reported joint AUC was equal to 0.90 (no stan-
dard error provided) [26] and the highest value was
equal to 0.997 (95% CI 0.926-1) [27]. Based on those
data, we formulated two prior distributions for the joint
AUC (Fig. 3a). The first prior distribution implied that
the probability that the AUC was larger than 0.7 and
0.9 was equal to 90% and 30%, respectively. This

prior was labeled as ‘optimistic’ in the sense that it
pointed toward a high diagnostic accuracy. The second
prior distribution choice was labeled as ‘skeptical’ as
it suggested that the AUC was around 0.75, with only
5% probability that it exceeded 0.90, the lowest value
reported [25].

Also for the specificity and sensitivity of the clinical
diagnosis, we used informative priors. Three studies
[4, 28, 29] reported high sensitivity of the clinical AD
diagnosis (ranging from 81.8% to 100%) in a mixed
dementia setting; another study [30] reported much
worse sensitivities ranging from 39% to 95% and speci-
ficities ranging from 33% to 100%. Based on those
data, we formulated two prior distributions (Fig. 3b).
The first, ‘optimistic’ prior in accordance with [4, 28,
29], suggested a sensitivity and specificity of about
90%, with 5% probability that sensitivity and speci-
ficity were below 80%. The second, more ‘skeptical’
prior, in accordance with [30], was centered at 59%,
with a 95% probability that sensitivity and specificity
were larger than 25%. The ‘skeptical’ prior assumed
less information about the performance of the clinical
diagnosis and allowed more flexibility for the biomark-
ers to ‘overrule’ the clinical diagnosis, as compared to
the ‘optimistic’ prior distribution.



894 E. Coart et al. / Performance AD Biomarkers no Gold Standard

(a) Prior distributions AUC

(b) Prior distributions
Sensitivity & specificity clinical AD diagnosis

—— Skeptical
¥ 1 — — Optimistic

—— Skeptical n
_| =~ Optimistic I

AUC

0.2 0.4 06 0.8 1.0

Sensitivity/Specificity

Fig. 3. Prior distributions for the AUC (a) and sensitivity/specificity of the clinical diagnosis (b).

If we treat the clinical diagnosis as an imperfect ref-
erence test, the true disease status of the subjects is
unknown. It is hence not possible to use a binary clas-
sifier to establish a ROC curve. Informally speaking,
the model we use predicts the disease status of the indi-
viduals that best fits the biomarker and clinical data.
At the same time, the parameters of a multivariate nor-
mal distribution for the biomarkers are estimated for
each group, defined by the predicted disease status of
the individuals. Based on the estimated distributional
parameters, a ‘bi-normal ROC-curve’ [9] is obtained,
providing estimates of sensitivity and specificity. More
details on the Bayesian methodology can be found in
the Supplementary Material.

AD biomarker performance assuming that the
clinical diagnosis is a perfect reference test

To evaluate the impact of allowing for errors in the
clinical diagnosis, we also performed two analyses that
assumed that the clinical diagnosis indicates the correct
disease status.

First, the data were analyzed using logistic regres-
sion, a methodology that is often applied to evaluate
AD biomarkers’ performance [31, 32]. A diagnostic
score was calculated with the regression parameters
and the diagnostic performance of this score was eval-
uated against the clinical diagnosis.

Second, we analyzed the AD biomarkers’ perfor-
mance with the new Bayesian method (see above),
assuming that the clinical diagnosis is a perfect ref-

erence test. Toward this end, sensitivity and specificity
of the clinical diagnosis in the Bayesian model were
setto 1 (i.e., ‘extremely’ informative priors were used)
and the prevalence of AD was estimated by the pro-
portion of clinical AD subjects in the datasets.

By comparison of the results obtained for the latter
two analyses the effect of the methodology (Bayesian
method versus classical logistic regression) could be
evaluated. In addition, the comparison of the results of
the two Bayesian analyses allowed the evaluation of the
effect of handling the clinical diagnosis data (perfect
versus imperfect reference test) on the assessment of
the diagnostic performance of the AD biomarkers.

Model fitting

The proposed Bayesian method assumed that all
biomarkers display a normal distribution. To conform
to this assumption, Total tau and P-tau;g;, values were
log transformed for all analyses. The analyses were
performed using R [33], version 3.0.1 and OpenBUGS
[34]. More information on model fitting is provided in
the Supplementary Material.

After fitting the models, the median AUC was
obtained from the posterior distribution, together with
a95% credible interval (Crl), the Bayesian counterpart
of the ‘classical’ confidence interval (CI). Crls pro-
vides the range of values that are expected with 95%
probability according to the (posterior) distribution.
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RESULTS

Figure 4 shows the ROC curves for different analy-
ses of the VUmc data (grey) and ADNI data (black).
In particular, it shows the curves for the analysis using
the logistic regression (dotted), for the Bayesian model
obtained by assuming a perfect reference test (dashed),
and by assuming an imperfect reference test (solid).
Note that the latter were obtained by using the ‘skep-
tical” AUC prior and ‘optimistic’ priors for sensitivity
and specificity of the clinical diagnosis.

The ROC curves for the logistic regression are close
to the curves corresponding to the Bayesian model that
also assumed that the clinical diagnosis is a perfect
reference test. These results show that the Bayesian
method in principle yields the same results as the ‘clas-
sical’ logistic regression, proving confidence in our
approach. Consequently, we have further focused on
the Bayesian methodology.

When assuming that the clinical diagnosis is an
imperfect reference test, the ROC curves are higher
compared to the corresponding curves obtained when
assuming that the reference test is perfect. This shows
that, by assuming that the clinical diagnosis flaw-
lessly indicates the pathophysiological AD status, one
underestimates the joint diagnostic performance of the
biomarkers.

In particular, for the VUmc dataset, the median AUC
was equal to 0.949 with 95% CrI [0.935,0.960] when
the diagnosis was treated as a perfect reference test
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Fig. 4. ROC curves for different analyses for VUmc (grey) and
ADNI (black) dataset.

and 0.990 with 95% CrI [0.985,0.995] when treated
as an imperfect reference test. For the ADNI data, the
corresponding values were equal to 0.870 (95% Crl:
[0.817,0.912]) and 0.975 (95% CrI: [0.943,0.990]),
respectively.

Figure 5 shows the results of analyses with dif-
ferent prior distributions. The difference between the
ROC curves (and hence, AUC) obtained with different
combinations of the ‘optimistic’ and ‘skeptical’ prior
distributions for the AUC and sensitivity and speci-
ficity of the clinical diagnosis was minimal (Fig. 5).

DISCUSSION

By applying the newly developed Bayesian method
to the two datasets, we were able to show that the AUC
to discriminate between subjects with AD pathology
and controls, increases from 0.949 (with 95% credi-
ble interval [0.935,0.960]) to 0.990 ([0.985,0.995]) and
from 0.870 ([0.817,0.912]) to 0-975 ([0.943,0.990]) for
the VUmc and ADNI cohorts, respectively.

This effect can be intuitively explained as follows.
With an imperfect clinical diagnosis, some individuals
will be diagnosed as non-AD, while their AD biomark-
ers may be indicative of existing AD pathophysiology,
as biomarker abnormalities can occur decades before
clinical symptoms become apparent [35]. For these
individuals, the AD biomarkers will be considered as
‘incorrect’ if the clinical diagnosis is regarded as the
perfect reference test. Consequently, the performance
of the biomarkers will be underestimated. It is in this
complex situation that our proposed approach is most
useful [7, 36], enabling an estimation of the biomark-
ers’ performance by objectively examining the strength
of statistical relationships among variables.

We applied a Bayesian approach because this
allowed integrating different sources of information,
while taking into account the absence of a perfect
reference test. In Bayesian inference, the specifica-
tion of prior distributions for the model parameters
is needed. It is good practice to perform a sensitiv-
ity analysis to check the influence of the choice of
the prior distributions on the results and to disen-
tangle the effect of the prior distributions and of the
data on the reported results. Toward this end, ‘skepti-
cal’ and ‘optimistic priors’ for the biomarkers” AUC
and sensitivity and specificity of the clinical diagno-
sis were used in our analysis. The ‘skeptical’ priors
were only weakly informative (containing little prior
information) while the ‘optimistic’ priors contained
more information that pointed to a better diagnostic
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Fig. 5. Sensitivity analysis: ROC curves when using different priors for VUmc (top row) and ADNI dataset (bottom row). The graphs on the
right represent the same ROC curves as the graphs on the left, but are zoomed in to the rectangle in the upper left corner. Note that, for VUmc,

the solid and dashed grey line overlap.

performance of the biomarkers or clinical diagnosis
as found in literature. Figure 5 shows that the differ-
ent combinations of these prior distributions resulted
in minimally different ROC-curves. This implies that
our conclusions are robust to reasonable changes in
prior distributions for the diagnostic performance of
the biomarkers and clinical diagnosis. Put differently,
the results presented in Fig. 4 are mainly driven by the
data and not by the prior information.

All statistical analyses rely on assumptions.
Bayesian statistics has the advantage to encour-
age a thorough consideration and presentation of
the assumptions underlying the performed analysis.
We have avoided the assumption that the refer-

ence test is perfect, because this has been reported
to cause biased diagnostic accuracy results [7, 36,
37]. The validity of the presented approach relies
on the assumption that the clinical diagnosis and
AD biomarkers do not misclassify the same sub-
jects (the ‘conditional independence assumption’).
At this point, mainly heuristic arguments can be
offered for the plausibility of this assumption. As
long as the clinical diagnosis is not based on the
CSF biomarkers, we can assume that the biomarkers
and clinical diagnosis do not tend to misclassify the
same subjects. Furthermore, our findings are in line
with the reports on lower diagnostic performance of
CSF biomarkers when evaluated against the clinical
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diagnosis instead of the pathology confirmed diagno-
sis [10].

There is no gold standard for a complex disease
like AD [3]. We show that this is no longer an
issue as the developed Bayesian methodology can
deal with the absence of a perfect reference test. The
new approach is constructed by assembling compo-
nents of methods that have been proposed for the
evaluation of the diagnostic performance of a com-
bination of markers [39] when no perfect reference
test is available [36]. To our knowledge, this is the
first report of the use of a Bayesian approach to
define the diagnostic performance of AD biomarkers
that acknowledges the absence of a perfect reference
test.

The new methodology is based on well-established
statistical concepts, but is more complicated than
a simple comparison with the clinical diagnosis or
dichotomized PET data as outcome. It is, however,
the complexity of a dementia diagnosis that calls for
appropriate, more advanced analysis methods.

The reported diagnostic accuracy results are relevant
only for discrimination between the two well-defined
groups in this study namely AD versus SMC/control.
These estimates of diagnostic accuracy are often
higher than expected in the target patient popula-
tion which contains difficult-to-diagnose subjects (e.g.,
MCIT patients) [7]. This is not an issue for the pur-
pose of our manuscript, as our goals were to develop
a new method that allows for an imperfect refer-
ence test and to compare the resulting estimates of
diagnostic accuracy with those obtained by currently
applied methodologies. In practice, these extremely
high accuracy estimates will not be achieved because
the target patient population will contain difficult-to-
diagnose subjects (such as MCI patients) and patients
with different types of dementia. However, the esti-
mates of diagnostic accuracy are expected to be higher
in the target patient population when estimated with
the Bayesian analysis as compared to a classical anal-
ysis with the clinical diagnosis as perfect reference
test.

Although the patterns of differences between the
results for the different models (Fig. 4) were identical
for VUmc and ADNI datasets, the numerical values of
the AUC estimates were not. For each of the three mod-
els, the combined biomarkers’ AUC was higher for the
VUmc data than for the ADNI data. This difference is
most likely due to the higher age of the ADNI subjects
(on average about 10 years older than VUmc subjects),
as it is well-known that the diagnostic accuracy of CSF
AD biomarkers decreases with age [38].

The new methodology can now be used for re-
investigation of the clinical value of existing AD
biomarkers to determine which CSF biomarkers are
needed for maximum discriminate between stable and
progressing MCI patients or for a differential demen-
tia diagnosis. The cut-offs that would be derived from
the ROC-curve of the new method will be differ-
ent from the current cut-offs values that are set with
the clinical diagnosis as perfect reference test. Also
the comparison of the clinical value between CSF
biomarkers measured using different platforms or AP
PET deposition measured with different tracers could
be addressed. Importantly, the new analysis method
also supports the direct comparison of the diagnostic
value of CSF and imaging biomarkers for A depo-
sition. In this way, the interchangeability (assumed in
the (preclinical) AD criteria[1, 5]) or complementarity
(as suggested by the reported proportion of discordant
cases [12—14]) of the two in vivo biomarkers could
be determined. We anticipate that the use of the new
Bayesian framework will lead to a more accurate diag-
nosis based on biomarkers and hence more diagnostic
confidence in early stages of AD.
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